A Large-Scale Neural Network Which Recognizes Handwritten Kanji Characters
نویسندگان
چکیده
We propose a new way to construct a large-scale neural network for 3.000 handwritten Kanji characters recognition. This neural network consists of 3 parts: a collection of small-scale networks which are trained individually on a small number of Kanji characters; a network which integrates the output from the small-scale networks, and a process to facilitate the integration of these neworks. The recognition rate of the total system is comparable with those of the small-scale networks. Our results indicate that the proposed method is effective for constructing a large-scale network without loss of recognition performance.
منابع مشابه
Neural Networks that Learn to Discriminate Similar Kanji Characters
A neural network is applied to the problem of recognizing Kanji characters. Using a b a c k propagation network learning algorithm. a threelayered. feed-forward network is trained to recognize similar handwritten Kanji characters. In addition. two new methods are utilized to make training effective. The recognition accuracy was higher than that of conventional methods. An analysis of connection...
متن کاملNeural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملRecognizing Handwritten Japanese Characters Using Deep Convolutional Neural Networks
In this work, deep convolutional neural networks are used for recognizing handwritten Japanese, which consists of three different types of scripts: hiragana, katakana, and kanji. This work focuses on the classification of the type of script, character recognition within each type of script, and character recognition across all three types of scripts. Experiments were ran on the Electrotechnical...
متن کاملHandwritten Character Recognition using Modified Gradient Descent Technique of Neural Networks and Representation of Conjugate Descent for Training Patterns
The purpose of this study is to analyze the performance of Back propagation algorithm with changing training patterns and the second momentum term in feed forward neural networks. This analysis is conducted on 250 different words of three small letters from the English alphabet. These words are presented to two vertical segmentation programs which are designed in MATLAB and based on portions (1...
متن کاملPersian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network
Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1989